

How to break Petya's cipher with
pen and paper

Francisco Blas Izquierdo Riera AKA klondike

About me

● Security interested since 17
● Computer Engineer & MSc
● Gentoo Hardened developer
● Cryptography fan:

● Implemented AES-SIV in an Atmega (Arduino) bootloader
● Implemented CTR, CMAC and SIV modes in the Haskell crypto-api library
● Wrote own efficient TTH implementations
● Pushed for adding stronger cryptography to the ADC protocol

● Currently working as pentester and providing cryptographic
support at Coresec Systems AB

Short intro to crypto

● Confusion: ability of a cipher to hide the relation
between plain and ciphertext

● Diffusion: ability of a cipher to apply a bit change to
all its outputs

● Stream cipher: a cipher able to encrypt data bit by bit
● Salsa20: a stream cipher, it encrypts a known state

which is xored with the plaintext
● ChaCha20: a derivative of Salsa20. Used nowadays

as a replacement for RC4 in TLS and SSH

The backstory

● Petya published, first ransomware working from
the boot sector

● Leostone discovers a flaw on the keying system
● Key entropy reduced to 46.03 bits (from 92.06)

● Leostone attempts a brute force attack
● Discarded for being too slow

● Leostone implements a genetic algorithm search
● It works

The Petya’s cipher challenge

● Petya uses a Salsa20 like cipher
● Petya’s cipher was broken using genetic

algorithms
● Unknown relation between plaintext and ciphertexts

(bad confusion)

● Was this an issue specific to Petya or did it affect
Salsa20?

● If it affects Salsa20, does it also affect ChaCha20?

The cryptanalysis constraints

● Fully independent research
● Carried out in spare time
● Used own tools
● Only pen and paper available most of the time

The algebraic approach

● Results on procedure to break cipher for all
keys

● Models cipher as set of equations
● Adds → groups of xors, ands and ors
● Rotates → remap bits
● Xors → xor of each bit

Equations get complicated soon

A more abstract approach

● Focus on diffusion and confusion
● How do inputs contribute to outputs?
● Heuristic of words with less contributions

Example

Word Contributors Word Contributors

0 0 8 8

1 1 9 9

2 2 10 10

3 3 11 11

4 4 12 12

5 5 13 13

6 6 14 14

7 7 15 15

Before the first run

Example

Word Contributors Word Contributors

0 0 8 8

1 1 9 9

2 2 10 10

3 3 11 11

4 0,4,12 12 12

5 5 13 13

6 6 14 14

7 7 15 15

After:
u := uint32(me[0] + me[12])
me[4] ^= uint16(u<<7 | u>>(32-7))

Example

Word Contributors Word Contributors

0 0,4,8,12 8 0,4,8,12

1 1 9 9

2 2 10 10

3 3 11 11

4 0,4,12 12 0,4,8,12

5 5 13 13

6 6 14 14

7 7 15 15

After:
u = uint32(me[4] + me[0])
me[8] ^= uint16(u<<9 | u>>(32-9))
u = uint32(me[8] + me[4])
me[12] ^= uint16(u<<13 | u>>(32-13))
u = uint32(me[12] + me[8])
me[0] ^= uint16(u<<18 | u>>(32-18))

Example

Word Contributors Word Contributors

0 0,4,8,12 8 0,4,8,12

1 1,5,9,13 9 1,5,9

2 2,6,10,14 10 2,6,10,14

3 3,11,15 11 3,7,11,15

4 0,4,12 12 0,4,8,12

5 1,5,9,13 13 1,5,9,13

6 2,6,10,14 14 6,10,14

7 3,7,11,15 15 3,7,11,15

After the first row round

Example

Word Contributors Word Contributors

0 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 8 0,4,8,12

1 0,1,3,4,5,8,9,11,12,13,15 9 1,5,9

2 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 10 2,6,10,14

3 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 11 3,7,11,15

4 0,4,12 12 0,4,8,12

5 1,5,9,13 13 1,5,9,13

6 2,6,10,14 14 6,10,14

7 3,7,11,15 15 3,7,11,15

After the first column quarter round

Example

Word Contributors Word Contributors

0 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15

1 0,1,3,4,5,8,9,11,12,13,15 9 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15

2 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 10 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15

3 0,1,2,3,4,5,6,8,9,10,11,12,13,14,15 11 1,2,3,5,6,7,9,10,11,14,15

4 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15 12 0,3,4,6,7,8,10,11,12,14,15

5 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15 13 0,1,3,4,5,6,7,8,9,10,11,12,13,14,15

6 0,1,2,4,5,6,9,10,12,13,14 14 0,1,3,4,5,6,7,8,9,10,11,12,13,14,15

7 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15 15 0,1,3,4,5,6,7,8,9,10,11,12,13,14,15

After the first column round

Example

Word Contributors Word Contributors

0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 9 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 10 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 11 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

4 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 12 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

5 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

6 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 14 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

7 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

After the second row round

WOW! That also escalated fast

Back to the design board

● Lots of type casting going on
● What is the type of the addition in Go?
● Are sign bits expanded on 32-bit cast?
● Why is rotation only 32-bit operation?

u := uint32(me[0] + me[12])
me[4] ^= uint16(rotl(u,7))

Turns out the king had been
naked all along!

● Additions returned the same type of their
inputs
● 16-bit unsigned integers

● The 32-bit cast results in zero expansion
● No sign bits to care about
● 0 xor x = x
● Rotations result in unmodified bits

The first attempt

● Left and right rotations
● Smallest left: 7 bits
● Only right: 2 bits

● 5 bits per word unmodified
● Entropy reduced to 176 bits (from 256)

Not Good Enough!

Let’s focus on unmodified bits!

● Given a word:
● Mark any bit affected by other word as tainted
● Find non tainted bits

Example

Word Unmodified bits Word Unmodified bits

0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 9 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 10 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 11 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

4 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 12 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

5 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

6 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 14 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

7 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Before the run

Example

Word Unmodified bits Word Unmodified bits

0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 9 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 10 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 11 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

4 0,1,2,3,4,5,6 12 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

5 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

6 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 14 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

7 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

After:
u := uint32(me[0] + me[12])
me[4] ^= uint16(u<<7 | u>>(32-7))

Example

Word Unmodified bits Word Unmodified bits

0 2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8

1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 9 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 10 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 11 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

4 0,1,2,3,4,5,6 12 0,1,2,3,4,5,6,7,8,9,10,11,12

5 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

6 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 14 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

7 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

After:
u = uint32(me[4] + me[0])
me[8] ^= uint16(u<<9 | u>>(32-9))
u = uint32(me[8] + me[4])
me[12] ^= uint16(u<<13 | u>>(32-13))
u = uint32(me[12] + me[8])
me[0] ^= uint16(u<<18 | u>>(32-18))

Example

Word Unmodified bits Word Unmodified bits

0 2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8

1 0,1,2,3,4,5,6,7,8,9,10,11,12 9 0,1,2,3,4,5,6

2 0,1,2,3,4,5,6,7,8 10 2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6 11 0,1,2,3,4,5,6,7,8,9,10,11,12

4 0,1,2,3,4,5,6 12 0,1,2,3,4,5,6,7,8,9,10,11,12

5 2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8

6 0,1,2,3,4,5,6,7,8,9,10,11,12 14 0,1,2,3,4,5,6

7 0,1,2,3,4,5,6,7,8 15 2,3,4,5,6,7,8,9,10,11,12,13,14,15

After the first row round

Example

Word Unmodified bits Word Unmodified bits

0 2,3,4,5,6,7,8,9,10,11,12,13,14,15 8 0,1,2,3,4,5,6,7,8

1 0,1,2,3,4,5,6 9 0,1,2,3,4,5,6

2 0,1,2,3,4,5,6,7,8 10 2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 0,1,2,3,4,5,6 11 0,1,2,3,4,5,6

4 0,1,2,3,4,5,6 12 0,1,2,3,4,5,6

5 2,3,4,5,6,7,8,9,10,11,12,13,14,15 13 0,1,2,3,4,5,6,7,8

6 0,1,2,3,4,5,6 14 0,1,2,3,4,5,6

7 0,1,2,3,4,5,6,7,8 15 2,3,4,5,6,7,8,9,10,11,12,13,14,15

After the first column round (and after each successive iteration)

At least 7 bits per word

State entropy reduced to 108 bits

How are the state elements
mapped?

This comment is particularly
revealing

Const0 uint16 me0!

Key0 uint16 me1

Key2 uint16 me2

Key4 uint16 me3

Key6 uint16 me4

Const2 uint16 me5!

Nounce0 uint16 me6!

Nounce2 uint16 me7!

Counter uint32 me8! me9!

Const4 uint16 me10!

Key8 uint16 me11

Key10 uint16 me12

Key12 uint16 me13

Key14 uint16 me14

Const6 uint16 me15!

Example

Word Unmodified bits Word Unmodified bits

Const0 2,3,4,5,6,7,8,9,10,11,12,13,14,15 Counter_LSB 0,1,2,3,4,5,6,7,8

Key0 0,1,2,3,4,5,6 Counter_MSB 0,1,2,3,4,5,6

Key2 0,1,2,3,4,5,6,7,8 Const4 2,3,4,5,6,7,8,9,10,11,12,13,14,15

Key4 0,1,2,3,4,5,6 Key8 0,1,2,3,4,5,6

Key6 0,1,2,3,4,5,6 Key10 0,1,2,3,4,5,6

Const2 2,3,4,5,6,7,8,9,10,11,12,13,14,15 Key12 0,1,2,3,4,5,6,7,8

Nonce0 0,1,2,3,4,5,6 Key14 0,1,2,3,4,5,6

Nonce2 0,1,2,3,4,5,6,7,8 Const6 2,3,4,5,6,7,8,9,10,11,12,13,14,15

After mapping elements to words

Key entropy is 68 bits

Some questions left

● How is state combined with plaintext?
● Xor

● How is passphrase expanded?
● uint16(v<<1)<<8 | uint16(v+'z')

● Which are valid inputs?
● 123456789abcdefghijkmnopqrstuvwxABCDEFGHJKLMNP

QRSTUVWX

● How are the expansions mapped to keys?
● Letter 0 to Key0, letter 2 to Key2, letter 4 to Key4...

Example

Word Unmodified bits Word Unmodified bits

Const0 2,3,4,5,6,7,8,9,10,11,12,13,14,15 Counter_LSB 0,1,2,3,4,5,6,7,8

e(Letter0) 0,1,2,3,4,5,6 Counter_MSB 0,1,2,3,4,5,6

e(Letter2) 0,1,2,3,4,5,6,7,8 Const4 2,3,4,5,6,7,8,9,10,11,12,13,14,15

e(Letter4) 0,1,2,3,4,5,6 e(Letter8) 0,1,2,3,4,5,6

e(Letter6) 0,1,2,3,4,5,6 e(Letter10) 0,1,2,3,4,5,6

Const2 2,3,4,5,6,7,8,9,10,11,12,13,14,15 e(Letter12) 0,1,2,3,4,5,6,7,8

Nonce0 0,1,2,3,4,5,6 e(Letter14) 0,1,2,3,4,5,6

Nonce2 0,1,2,3,4,5,6,7,8 Const6 2,3,4,5,6,7,8,9,10,11,12,13,14,15

After mapping the passphrase to words

Combining the attacks

● We have 7 bits (or even 9) of the key
unmodified

● Plaintext is a string of 0x37s
● Can we infer 'v' from the last 8 bits of:

uint16(v<<1)<<8 | uint16(v+'z') ?
● v = (((w&0xff) 0x37)-0x7a)&0xff⊕

● Will it work with the character set and 7 bits?

Yes as no 'v' has the MSB set

Cryptanalysis conclusions:

● We derive this equation:
● v=(((w&0x7f) 0x37)-0x7a)&0x7f⊕

● We use the equation to map words of
ciphertext to input key parts

● We dismiss unused key part

We can break Petya with a single
plain text

We can even bruteforce lost
nonces!

Is Salsa20 broken?

Why?

● Salsa20 has no passphrase mapping at all
● No passphrase mapping flaw

● Salsa20 uses 32-bit words everywhere
● No rotation flaw

What happened afterwards?

● Developers released a new version using
full Salsa20
● With subtly broken passphrase mapping
● Hasherezade published the reverse engineered

code and procrash broke it using GPUs

● Released yet another version with more
complicated passphrase mapping
● So far it hasn’t been cracked

Things to take home

● Salsa20 is still safe
● Specific implementations may not be

● Avoid implementing your own cryptography!

● Cryptanalysis is not always about advanced mathematics.
● The contributors measurement can be used to find in O(n*m) with

memory use of O(n²)
● Too tedious to carry out on pen and paper bit by bit

● The unmodified bits measurement can be used in O(m) with
memory use of O(n)
● Works even with pen and paper (cross bits in a matrix as they get

modified)

Thanks!

● To Leostone for the implementation, previous work and cryptanalysis challenge
● To my mother and father for supporting my curiosity since I was a kid
● To the SEC-T organizers for making this talk and conference possible
● To those who supported me during the research
● To those who provided input during the preparation of this talk:

● Huzaifa Essajee
● Meredith Patterson
● Hasherezade
● Tero Hänninen
● Niklas Andersson
● Mikael Johansson

● Coresec Systems AB for providing me a place to rehearse this talk
● But especially, to you for your attention

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47

